

REGENT STUDIES
Focused education on life's walk!
www.regentstudies.com

-20 to 20 Number Line

-20 to 20 Number Line

-20 to 20 Number Line

-20 to 20 Number Line

Blank ThHTO Place Value Chart

Thousands Th	Hundreds H	Tens T	

Header 1 (22pt to 33pt) Answers

1. Question one? Select 'Numbered Bullets' from Paragraph Styles.

Answer one. Add a soft return after the question, using shift+return and then set the character style to 'bold'. Change the styles to the KS1 equivalent if required.
2. Question two?

This style can be used for a simple question-answer format. The table format, shown below, can be used for resources that include sections and would benefit from more structure.

Question	Answer
1. Question 1; numbers written in manually.	
a	
b	
c	
d	

1)

2)

The temperature was $-17^{\circ} \mathrm{C}$ at night and, during the day, it rose by $15^{\circ} \mathrm{C}$. What was the new temperature?

The temperature on one day was $35^{\circ} \mathrm{C}$ but the next day had fallen by $49^{\circ} \mathrm{C}$. What was the temperature on the second day?

The temperature falls by $35^{\circ} \mathrm{C}$. It is now $-18^{\circ} \mathrm{C}$. What was the original temperature?

3)

Town	January	Temperature change	February	Temperature change	March
Twinkl Town	$-5^{\circ} \mathrm{C}$	$+8^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$	$+7^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$
Education Avenue	$-1^{\circ} \mathrm{C}$	-8 ${ }^{\circ} \mathrm{C}$	$-9^{\circ} \mathrm{C}$	$+10^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$
Learning Lane	$-11.3{ }^{\circ} \mathrm{C}$	$-6^{\circ} \mathrm{C}$	$-17.3^{\circ} \mathrm{C}$	$+12^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$

1)

Country	Minimum Temperature	Maximum Temperature	Temperature range
Finland	$-20^{\circ} \mathrm{C}$	$19^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C}$ $39^{\circ} \mathrm{C}$
Japan	$-2^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C}$	$28^{\circ} \mathrm{C}$
Correct			

a) False. The UK has an average temperature range of $18.8^{\circ} \mathrm{C}$.
b) False. Japan has an average minimum temperature of $-2^{\circ} \mathrm{C}$ and the UK has an average minimum temperature of $-1.5^{\circ} \mathrm{C}$. Therefore, the UK's temperature is warmer than Japan's and should be ordered after it. The correct order should be: Russia, Finland, Japan, UK.
c) True. The difference between $-30.6^{\circ} \mathrm{C}$ and $26^{\circ} \mathrm{C}$ is $56.6^{\circ} \mathrm{C}$.

1) $-1^{\circ} \mathrm{C}$
2) Accept any correct number sentences, such as:

Accept any answer that identifies that two positive numbers could be added to make 15 but two negative numbers could not be added to make 15.

1) Match these statements with the correct place on the number line.

What is 7 less than -2 ? \square
$5+11=$
What is 12 taken from 5?
Add 8 to -9 =
$-10+14=$
2) Solve these temperature problems.

The temperature was $-17^{\circ} \mathrm{C}$ at night and, during the day, it rose by $15^{\circ} \mathrm{C}$. What was the new temperature?

The temperature on one day was $35^{\circ} \mathrm{C}$ but the next day had fallen by $49^{\circ} \mathrm{C}$. What was the temperature on the second day?

The temperature falls by $35^{\circ} \mathrm{C}$. It is now $-18^{\circ} \mathrm{C}$.
What was the original temperature?
\qquad

1) Oliver has found the minimum and maximum average temperatures for four countries around the world. He has calculated the temperature range for each country. Can you identify his mistakes and correct them?

Country	Minimum Temperature	Maximum Temperature	Temperature range
Finland	$-20^{\circ} \mathrm{C}$	$19^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C}$
Japan	$-2^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C}$	$28^{\circ} \mathrm{C}$
Russia	$-30.6^{\circ} \mathrm{C}$	$16.9^{\circ} \mathrm{C}$	$46.5^{\circ} \mathrm{C}$
UK	$-1.5^{\circ} \mathrm{C}$	$17.3^{\circ} \mathrm{C}$	$18.2^{\circ} \mathrm{C}$

Using the table, explain whether the following statements are true or false.
a) No country has an average temperature range less than $25^{\circ} \mathrm{C}$. \qquad
b) If you order the countries by their average minimum temperature, from coldest to warmest, they would be: Russia, Finland, UK and Japan.
\qquad
c) The difference in temperature between the coldest minimum temperature and the hottest maximum temperature is less than $60^{\circ} \mathrm{C}$.
\qquad

Look at the information in the table and make your own true or false statement for a partner.
Can they identify whether your statement is true or false?
 ${ }^{\text {Approved }}$

1) Jai measured the morning temperature of the school playground for one week. On day one, the temperature was $-6.5^{\circ} \mathrm{C}$. On day two, the temperature increased by $5.7^{\circ} \mathrm{C}$. On day three, it dropped by $5.3^{\circ} \mathrm{C}$. On day four, it increased by $6.9^{\circ} \mathrm{C}$ and on day five, it dropped by $1.8^{\circ} \mathrm{C}$.

What was the temperature by the end of day 5 ? \qquad
2)
$=$ A positive or negative number

= A positive or negative number

Investigate the possible values of

and

if:

$+$

$=15$

Can you use any decimal numbers to make 15?
\qquad

Is it possible to have two positive or two negative numbers to complete the calculation?
\qquad
\qquad

1) Complete these calculations.
a) What is 7 less than -2?
b) $-5+11=$
c) What is 12 taken from 5?
d) Add 8 to -9 =
e) $-10+14=$
2) Solve these temperature problems.

The temperature on one day was $35^{\circ} \mathrm{C}$ but the next day had fallen by $49^{\circ} \mathrm{C}$. What was the temperature on the second day?

The temperature falls by $35^{\circ} \mathrm{C}$. It is now $-18^{\circ} \mathrm{C}$. What was the original temperature?

3) This table shows how the temperature changed on three different streets around the world. Complete the table to show how the temperatures changed over three months.

1) Complete these calculations.
a) What is 7 less than -2?
b) $-5+11=$
c) What is 12 taken from 5?
d) Add 8 to -9 =
e) $-10+14=$
2) Solve these temperature problems.

The temperature was $-17^{\circ} \mathrm{C}$ at night and, during the day, it rose by $15^{\circ} \mathrm{C}$. What was the new temperature?

The temperature on one day was $35^{\circ} \mathrm{C}$ but the next day had fallen by $49^{\circ} \mathrm{C}$. What was the temperature on the second day?

The temperature falls by $35^{\circ} \mathrm{C}$. It is now $-18^{\circ} \mathrm{C}$. What was the original temperature?

3) This table shows how the temperature changed on three different streets around the world. Complete the table to show how the temperatures changed over three months.

Town	JanTemperature change	Feb	Temperature change	Mar	
Twinkl Town	$-5^{\circ} \mathrm{C}$	$+8^{\circ} \mathrm{C}$	$-{ }^{\circ} \mathrm{C}$	$+7^{\circ} \mathrm{C}$	$-{ }^{\circ} \mathrm{C}$
Education Avenue	$-1^{\circ} \mathrm{C}$	$-{ }^{\circ} \mathrm{C}$	$-9^{\circ} \mathrm{C}$	$-{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$
Learning Lane	$-11.3^{\circ} \mathrm{C}$				
${ }^{\circ} \mathrm{C}$	$-17.3^{\circ} \mathrm{C}$	$-{ }^{\circ}{ }^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$		

1) Oliver has found the minimum and maximum average temperatures for four countries around the world.
He has calculated the temperature range for each country. Can you identify his mistakes and correct them?

Country	Minimum Temperature	Maximum Temperature	Temperature range
Finland	$-20^{\circ} \mathrm{C}$	$19^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C}$
Japan	$-2^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C}$	$28^{\circ} \mathrm{C}$
Russia	$-30.6^{\circ} \mathrm{C}$	$16.9^{\circ} \mathrm{C}$	$46.5^{\circ} \mathrm{C}$
UK	$-1.5^{\circ} \mathrm{C}$	$17.3^{\circ} \mathrm{C}$	$18.2^{\circ} \mathrm{C}$

Using the table, explain whether the following statements are true or false.
a) No country has an average temperature range less than $25^{\circ} \mathrm{C}$.
b) If you order the countries by their average minimum temperature, from coldest to warmest, they would be: Russia, Finland, UK and Japan.
c) The difference in temperature between the coldest minimum temperature and the hottest maximum temperature is less than $60^{\circ} \mathrm{C}$.

Look at the information in the table and make your own true or false statement for a partner. Can they identify whether your statement is true or false?

1) Oliver has found the minimum and maximum average temperatures for four countries around the world.
He has calculated the temperature range for each country.
Can you identify his
mistakes and correct them?

Country	Minimum Temperature	Maximum Temperature	Temperature range
Finland	$-20^{\circ} \mathrm{C}$	$19^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C}$
Japan	$-2^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C}$	$28^{\circ} \mathrm{C}$
Russia	$-30.6^{\circ} \mathrm{C}$	$16.9^{\circ} \mathrm{C}$	$46.5^{\circ} \mathrm{C}$
UK	$-1.5^{\circ} \mathrm{C}$	$17.3^{\circ} \mathrm{C}$	$18.2^{\circ} \mathrm{C}$

Using the table, explain whether the following statements are true or false.
a) No country has an average temperature range less than $25^{\circ} \mathrm{C}$.
b) If you order the countries by their average minimum temperature, from coldest to warmest, they would be: Russia, Finland, UK and Japan.
c) The difference in temperature between the coldest minimum temperature and the hottest maximum temperature is less than $60^{\circ} \mathrm{C}$.

Look at the information in the table and make your own true or false statement for a partner. Can they identify whether your statement is true or false?

1) Jai measured the morning temperature of the school playground for one week. On day one, the temperature was $-6.5^{\circ} \mathrm{C}$. On day two, the temperature increased by $5.7^{\circ} \mathrm{C}$. On day three, it dropped by $5.3^{\circ} \mathrm{C}$. On day four, it increased by $6.9^{\circ} \mathrm{C}$ and on day five, it dropped by $1.8^{\circ} \mathrm{C}$.

What was the temperature by the end of day 5 ?

2)

$=A$ positive or negative number

$=A$ positive or negative number

Investigate the possible values of

Can you use any decimal numbers to make 15 ?
\qquad
\qquad

Is it possible to have two positive or two negative numbers to complete the calculation?

1) Jai measured the morning temperature of the school playground for one week. On day one, the temperature was $-6.5^{\circ} \mathrm{C}$. On
 day two, the temperature increased by $5.7^{\circ} \mathrm{C}$. On day three, it dropped by $5.3^{\circ} \mathrm{C}$. On day four, it increased by
$6.9^{\circ} \mathrm{C}$ and on day five, it dropped by $1.8^{\circ} \mathrm{C}$.

What was the temperature by the end of day 5?

2)

$=A$ positive or negative number

$=A$ positive or negative number

Investigate the possible values of

Can you use any decimal numbers to make 15?
\qquad
\qquad

Is it possible to have two positive or two negative numbers to complete the calculation?
\qquad
\qquad

Extra Challenge

To calculate mentally with increasingly large numbers using all four operations.

Cut out the cards. In any order, complete the calculations. How many calculations can you complete in five minutes? Use a sand-timer, stopwatch or a clock to help you keep track of the time.

Repeat the task for a further five minutes. Did you beat your previous record?

Extra Challenge Answers

Question	Answer
1. How many calculations can you complete in five minutes?	
$5385+4935=$	10320
$543.6+59.5=$	603.1
$938+1094=$	2032
$49-+74.5=$	124
$85 \frac{2}{5}+54.3=$	139.7
998-385 =	613
$3.005+6.12=$	9.125
$9.48-3.52=$	5.96
583-259 =	324
$45.75 \times 100=$	4575
$58.05 \times 10=$	580.5
$57 \div 2=$	28.5
$137 \div 4=$	34.25
$844 \div 8=$	105.5
$49 \times 4=$	196
$243 \times 3=$	729
$175 \div 5=$	35
45.45-25.5 =	19.95

Negative Calculations

To calculate intervals across zero.

When calculating with positive and negative numbers, it is helpful to think of balloons and weights.

Positive numbers are like balloons. If you add balloons, the house will go up. If you take balloons away, the house will go down.

Negative numbers are like weights. If you add weights, the house will go down. If you take weights away, the house will go up.

This idea of balloons and weights can help us to solve calculations. Think of positive numbers as balloons. For example, if we see the calculation $3+4$, we know that adding 4 balloons will cause the house to go up by 4, so the number will get bigger. The answer is of course 7. If we see 4-6, we know that taking away 6 balloons will cause the house to go down by 6 , so the number will get smaller. The answer is -2 .

When we calculate with negative numbers, we need to think of them as weights. In the calculation

 $7+-5$, we are adding 5 weights. This would cause the house to go down by 5 and the number would get smaller. The answer is 2 . If we see $6--2$, we are taking away 2 weights, so the house will actually go up by 2 and the number will get bigger. The answer is 8 .

Use the idea of adding and taking balloons and weights to solve these calculations involving both positive and negative numbers.

$3+-7=$	$-2-7=$	$5--2=$	$5+-9=$	$10+-3=$
$-5+3=$	$8--6=$	$2--5=$	$3+-2=$	$1--1=$

Negative Calculations Answers

$3+-7=-4$	$-2-7=-9$	$5--2=7$	$5+-9=-4$	$10+-3=7$
$-5+3=-2$	$8--6=14$	$2--5=7$	$3+-2=1$	$1--1=2$

Find a Path

To calculate intervals across zero.
000
Find the different paths through this table. For each starting number, complete each calculation shown in the column heading, then join the starting number to the answer with a line. Move across the table in this way until you reach the other side. You might want to use a different colour for each path.

The first one has been done for you:

Start	+5	-7	+8	-10	+6
-3	6		7	0	-1
7		-10	10	-12	3
1	-3	-5		-7	9
-8	9	2	-2	-3	6
4	2	-1	3		-6

Find a Path Answers

Start

Find a Path

To calculate intervals across zero.

000

Find the different paths through this table. For each starting number, complete each calculation shown in the column heading, then join the starting number to the answer with a line. Move across the table in this way until you reach the other side. You might want to use a different colour for each path.

The first one has been done for you:

Find a Path Answers

Start

Find a Path

To calculate intervals across zero.

000

Find the different paths through this table. For each starting number, complete each calculation shown in the column heading, then join the starting number to the answer with a line. Move across the table in this way until you reach the other side. You might want to use a different colour for each path.

The first one has been done for you:

Find a Path Answers

Start

Number Puzzle Activity Cards Answers

Question	Answer	$42 \times 8=$	336
$59+47=$	106	$34 \times 4=$	136
$86+88=$	174	$21 \times 3=$	63
$97+47=$	144	$19 \times 7=$	133
$63+39=$	102	$69 \div 3=$	23
$84+70=$	154	$92 \div 4=$	23
97-46=	51	$65 \div 5=$	13
$75-52=$	23	$48 \div 2=$	24
$52-49=$	3	$56 \div 4=$	14
$85-31=$	54		
94-56=	38		
$25 \times 5=$	125		

Number Puzzle Activity Cards Answers

Question	
$582+193=$	775
$391+395=$	786
$297+184=$	481
$394+879=$	1273
$472+485=$	957
$686-482=$	204
$497-287=$	210
$492-297=$	195
$983-458=$	525
$763-402=$	361
$120 \times 4=$	480

$483 \times 2=$	966
$150 \times 8=$	1200
$123 \times 3=$	369
$200 \times 5=$	1000
$148 \div 4=$	37
$548 \div 2=$	274
$129 \div 3=$	43
$200 \div 5=$	40
$138 \div 6=$	23

* C Mental

Number Puzzle Activity Cards Answers

Question	
$847+280=$	1127
$583+587=$	1170
$5824+2385=$	8209
$3484+4739=$	8223
$15.35+23.43=$	38.78
$582-486=$	96
$845-497=$	348
$54.5-33.4=$	21.1
$48.56-27.4=$	21.16
$998-584=$	414
$254 \times 4=$	1016

$894 \times 2=$	1788
$230 \times 8=$	1840
$139 \times 3=$	417
$250 \times 5=$	1250
$96 \div 4=$	24
$726 \div 2=$	363
$72 \div 3=$	24
$600 \div 5=$	120
$246 \div 6=$	41

Number Puzzle Activity Cards Answers

Question	Answer	$42 \times 8=$	336
$59+47=$	106	$34 \times 4=$	136
$86+88=$	174	$21 \times 3=$	63
$97+47=$	144	$19 \times 7=$	133
$63+39=$	102	$69 \div 3=$	23
$84+70=$	154	$92 \div 4=$	23
97-46=	51	$65 \div 5=$	13
75-52=	23	$48 \div 2=$	24
52-49 =	3	$56 \div 4=$	14
85-31 =	54		
94-56=	38		
$25 \times 5=$	125		

Number Puzzle Activity Cards Answers

Question	Answer
$582+193=$	775
$391+395=$	786
$297+184=$	481
$394+879=$	1273
$472+485=$	957
$686-482=$	204
$497-287=$	210
$492-297=$	195
$983-458=$	525
$763-402=$	361
$120 \times 4=$	480

$483 \times 2=$	966
$150 \times 8=$	1200
$123 \times 3=$	369
$200 \times 5=$	1000
$148 \div 4=$	37
$548 \div 2=$	274
$129 \div 3=$	43
$200 \div 5=$	40
$138 \div 6=$	23

Number Puzzle Activity Cards Answers

Question	
$847+280=$	1127
$583+587=$	1170
$5824+2385=$	8209
$3484+4739=$	8223
$15.35+23.43=$	38.78
$582-486=$	96
$845-497=$	348
$54.5-33.4=$	21.1
$48.56-27.4=$	21.16
$998-584=$	414
$254 \times 4=$	1016

$894 \times 2=$	1788
$230 \times 8=$	1840
$139 \times 3=$	417
$250 \times 5=$	1250
$96 \div 4=$	24
$726 \div 2=$	363
$72 \div 3=$	24
$600 \div 5=$	120
$246 \div 6=$	41

Number Line Addition Strategies

$3+9$

Draw a number line. Start at 3 and hop 9 hops to find the answer.

$3+9=12$

$23+14$

Draw a number line. Start at 23, partition 14 into tens and ones. Do one hop of 10 and then 4 hops of 1 to reach the answer.

$$
23+14=37
$$

Number Line

 Addition Strategies

 Addition Strategies}

$3+9$

Draw a number line. Start at 3 and hop 9 hops to find the answer.

$$
3+9=12
$$

$23+14$

Draw a number line. Start at 23. Partition 24 into 1 hop of 20 and one hop of 4 to get the answer.

or

Draw a number line. Start at 23. Partition 24 into 2 hops of 10 and 1 hop of 4 to get the answer.

$$
23+24=47
$$

Partitioning Addition Strategies

$52+76$
 $50+2$
 $+70+6$
 $120+8=128$

-Write the numbers underneath each other lining up the tens and ones.

- Partition the tens and ones.
- Add the tens.
- Add the ones.
-Combine the totals.

Expanded Columns Addition Strategies

Write the numbers underneath each 54 other lining up the tens and ones.

+68

Add the ones.

Add the tens.

Combine your ones and tens. Line up any hundreds.

Column Method Addition Strategies

1

65

65
$+\quad 72$

137

-Write the numbers underneat each other and line up the hundreds, tens and ones.

- Add the units and regroup any tens.
- Add the tens and regroup any hundreds. - Add the hundreds.

Dividing by 10
 Division Strategies

Use place value to work out how to divide in 10s.

$$
674 \div 10=?
$$

If you divide a number by 10 , the digits move one place value to the right.

Hundreds	Tens	Ones	Tenths	Hundrerths
$6 \div$	-			

Hundreds	Tens	Ones	Tenths	Hundrerths

$674 \div 10=67.4$

If you divide a number by 100, the digits will move two place value to the right.

Hundreds	Tens	Ones	Tenths	Hundrerths

Hundreds	Tens	Ones	Tenths	Hundrerths

$$
674 \div 10=6.74
$$

Repeated Subtraction Division Strategies

You can use repeated subtraction to see how many times a smaller number goes into a bigger one.

$$
15 \div 3=?
$$

The number of times you can take 3 from 15 is 5 .

$$
15-3-3-3-3-3=0
$$

$15 \div 3=5$

Grouping

Division Strategies

$20 \div 5=4$

20 divided by 5 gives 4 groups.

Grouping using arrays.

Repeated Addition Division Strategies

$28 \div 4=7$

Draw a number line starting at 0 .

Count on in 4 s until you reach 28.
Count how many hops it took.

28 divided by 4 is 7.

Repeated Addition (with remainders) Division Strategies

$13 \div 3=4 r 1$

Draw a number line starting at 0 .
Count on in 3 s getting as close to 13 as you can but not going past it.

Count your hops to get the answer.

Any left over is the remainder.

Partitioning
 Division Strategies

$84 \div 4$
 $80 \div 4=20$ $4 \div 4=1$ 21

Partition the number into tens and ones.

Divide the tens and ones.

Combine your totals.

Inverse

Division Strategies

Use multiplication tables to work out a division quetion.

$63 \div 9=$?

You can work this out by knowing ...

$7 \times 9=63$

So using the inverse, we know that ...

$63 \div 9=7$

Halving Division Strategies

Sometimes you can use halving to divide into $2 \mathrm{~s}, 4 \mathrm{~s}$ and 8 s .

$$
120 \div 2=60
$$

We can use this to divide by 4 by halving twice.

$$
120 \div 2=60
$$

then
$60 \div 2=30$
so

$$
120 \div 4=30
$$

We can use this to divide by 8 by halving 3 times.

$$
\begin{array}{r}
120 \div 2=60 \\
60 \div 2=30 \\
30 \div 2=15 \\
120 \div 8=15
\end{array}
$$

Short Division two digit numbers Division Strategies

$84 \div 6=?$

Partition 84 into tens and ones.

Work out how many 6s divide into 80 so that the answer is a multiple of 10 .

In this case, the highest multiple of 10 divisible by 6 is 60 .

Partition 84 into 60 and 24 then divide each number by six.

Combine your totals:

$10+4=14$

$6 \longdiv { 6 0 + 2 4 }$

This mathod can be shortened to:

$$
6 \longdiv { 1 4 }
$$

Short Division
 three digit numbers Division Strategies

$434 \div 7=?$

Work out how many 7s go into 430. (The answer must be a multuple of 10.)

In this case 7 goes into 430 sixty times leaving a remainder of 10.

Add this 10 to the remaining 4 from the original 343 to make 14.

Divide 14 by 7 to get 2 .
Combine 60 and 2 to get the answer.

This mathod can be shortened to:

$$
7 \longdiv { 4 2 }
$$

Long Division Division Strategies

$499 \div 15=?$

$26^{3 / 5}$

$1 5 \longdiv { 3 9 9 }$
300
99
90
r9

$$
\frac{9}{15}=\frac{3}{5}
$$

First partition the number.
Divide 300 by 15. Write this on the answer line above the correct units.

Divide 99 by 15.
Write any reminders as fraction as simplified as possible.

Long Division
 Division Strategies

 $4374 \div 27=?$| | 1 | 16 | 162 |
| :---: | :---: | :---: | :---: |
| divide | $2 7 \longdiv { 4 3 7 4 }$ | $2 7 \longdiv { 4 3 7 4 }$ | $2 7 \longdiv { 4 3 7 4 }$ |
| | | 27 | 27 |
| | | $\rightarrow \mathbf{1 6 7}$ | 167 -162 |
| | -1 | $\checkmark 16$ | $\xrightarrow{\longrightarrow 4}$ |
| multiply | $\begin{gathered} 2 7 \longdiv { 4 3 7 4 } \\ 27 \end{gathered}$ | $2 7 \longdiv { 4 3 7 4 }$ | |
| | | 27 | |
| | | 167 162 | $4374 \div 27=$ |
| | 1 | 16 | |
| subtract | $2 7 \longdiv { 4 3 7 4 }$ | $2 7 \longdiv { 4 3 7 4 }$ | |
| | -27 | 27 | |
| | 16 | 167 | |
| | | -162 | |
| | | 5 | |
| | 1 | 16 | |
| bring | $2 7 \longdiv { 4 3 7 4 }$ | $2 7 \longdiv { 4 3 7 4 }$ | |
| | -27 | 27 | |
| | 167 | 167 | |
| | | -162 54. | |
| | repeat! | 54 | cwink |

Sharing
Division Strategies

$$
16 \div 2=8
$$

16 shared equally between 2 gives you 8 .

Counting On Mental Maths Strategies

For adding and subtracting numbers close to each other. This strategy works well with a number line or square.

You can even do it mentally!

$34+15=?$

303132333435363738394041424344454647484950

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	30	39	40
41	42	4	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Counting Back Mental Maths Strategies

For subtracting smaller numbers. This strategy works well with a number line or square.

You can even do it mentally!

87-12 = ?

707172737475767778798081828384858687888990

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	70	00
01	02	03	01	05	06	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Near Doubles
 Mental Maths Strategies

For adding similar numbers.
Double one of the numbers and adjust by adding or subtracting the difference

$26+25=$

I know double 25 is 50 .

$$
\begin{gathered}
26+25= \\
1 \text { more than double is } 25=51
\end{gathered}
$$

Near Halves Mental Maths Strategies

For subtracting when the number is a near half.

25-12 =

I know half of 24 is 12 .

$$
25-12=13
$$

25 is 1 more than 24 , so answer is 1 more than $12=13$

Using Pairs to Ten Mental Maths Strategies

For adding where numbers add to 10 , or end with a 0 .

$23+67=$

I know $3+7=10$

$$
\begin{gathered}
23+67=20+60=90 \\
160-37=
\end{gathered}
$$

I know 10-7 = 3

$$
160-37=160-30-7=130-7=123
$$

Part, Part, Whole Mental Maths Strategies

Use known facts to add and subtract.

twinkl

Make Ten and Then Some

Mental Maths Strategies

Add and subtract past tens.

$$
56+8=
$$

$$
56+4=60 \quad \text { so } \quad 65+4+4=64
$$

505152535455565758596061626364656667686970

$$
\begin{gathered}
72-6= \\
72-2=70 \quad \text { so } 72-2-4=66
\end{gathered}
$$

$$
-4
$$

606162636465666768697071727374757677787980

Front-end Adding Mental Maths Strategies

For addition.

Compensation for 8 or 9 Mental Maths Strategies

For adding or subtracting where a number has 8 or 9 in ones.

Add 9 - add 10 and subtract 1 Subtract 8 - subtract 10 and add 2

Use strategy for:
Add 39 - add 40 and subtract 1 Subtract 79 - subtract 80 and add 1

$$
\begin{gathered}
34+9= \\
34+10=44 \\
44-1=43
\end{gathered}
$$

or

$$
\begin{gathered}
83-38= \\
83-40=43 \\
43+2=45
\end{gathered}
$$

Use Multiples of 25 Mental Maths Strategies

For adding or subtracting when numbers are near multiple of 25 .

Add or subtract and compensate.

$$
\begin{gathered}
76+48= \\
75+50=125 \\
125+1-2=124 \\
\text { or } \\
174-128= \\
175-125= \\
50-1-3=46
\end{gathered}
$$

Common Zeros Mental Maths Strategies

For adding or subtracting when numbers with the same number of zeros.

$$
\begin{gathered}
60+130= \\
6 \text { tens }+13 \text { tens }=19 \text { tens } \\
60+130=190
\end{gathered}
$$

1500-200
15 hundreds - 2 hundreds $=13$ hundreds

$$
1500-200=1300
$$

Trailing Zeros
Mental Maths Strategies

For multiplying numbers ending in zero.

$$
\begin{aligned}
40 \times 8 & = \\
4 \text { tens } \times 8 & =32 \text { tens } \\
40 \times 8 & =320
\end{aligned}
$$

Or

$$
70 \times 50=
$$

7 tens $\times 6$ tens $=42$ hundreds

$$
70 \times 60=4200
$$

Array
 Multiplication Strategies

Rows and columns with an equal amount in each.

$3 \times 5=15$

Equal Groups
 Multiplication Strategies

Use the same number of ones in each group.

$3 \times 5=15$

Repeated Addition Multiplication Strategies

$3 \times 5=15$

Number Line Multiplication Strategies

Starting from zero, hop 5 at a time. Where do you land?

1 hop of $5=5$
2 hops of $5=10$
3 hops of $5=15$
$3 \times 5=15$

Latice/Italian
 Multiplication Strategies

Abstract

Draw a grid to match the numbers. Write the partitioned number on top and to the right.

52

$5 \quad 2$

$5 \quad 2$
Draw diagonals.
Multiply the numerals.
Write the answers in the relevant box, writing the digits either side of the diagonal.

$52 \times 38=1976$

Partitioning Multiplication Strategies

53×38

Multiply each partition together and add the products.

$$
\begin{array}{rr}
50 \times 30 & =1500 \\
3 \times 30 & =90 \\
50 \times 8 & =400 \\
3 \times 8 & =24 \\
& 2014
\end{array}
$$

$53 \times 38=2014$

Grid Method Multiplication Strategies

x	50	2
30	1500	60
8	400	16

Multiply the partitioned number.

Add the products.

$52 \times 38=1976$

Column Method Multiplication Strategies

52 Write the numbers above each other in $\times 38$ the columns.

52
 38 Multiply 52×8
 416

52
$\times \quad 38$
Multiply 52×30
416
1560

416

+1560 Add the products.
1976

$52 \times 38=1976$

Expanded Column Method Multiplication Strategies

$$
\begin{aligned}
& 42 \\
& \times \quad 6 \\
& \hline 12(2 \times 6) \\
& 240 \\
& \hline
\end{aligned}
$$

1. Line up the ones and the tens.
2. Multiply the ones.

3. Multiply tens.

4. Add the totals together.

$42 \times 6=252$

Column Method Multiplication Strategies 3-digit $\times 2$-digit carrying not shown

368
Write the numbers above each other in the columns.

368

$\begin{array}{r}24 \\ \times \quad \text { Multiply } 368 \times 4 \\ \hline 1472\end{array}$

368

$\begin{array}{r}24 \\ \times \quad \text { Multiply } 368 \times 20 \\ 7360 \\ \hline\end{array}$

1472

+7360 Add the products. 8832

$368 \times 24=8832$

Column Method Multiplication Strategies

 4-digit $\times 2$-digit carrying not shown5368 Write the numbers above each other in $\times \quad 24$ the columns.

5368

$\times \quad 24$ Multiply 5368×4
1472
5368
(24
$\times \quad$ Multiply 5368×20
107360
21472
+107360 Add the products.
128832

$5368 \times 24=128,832$

Column Method

Multiplication Strategies

5-digit $\times 2$-digit carrying not shown

25368 Write the numbers above each other in $\times 24$ the columns.

25368

$\times \quad 24$ Multiply 25368×4
101472

25368

24
$\times \quad$ Multiply 25368×20
101472
507360

101472

+507360 Add the products. 608832

$25386 \times 24=608832$

Column Method Multiplication Strategies

 6-digit $\times 2$-digit carrying not shown125368 Write the numbers above each other in x 24 the columns.

125368

$\times \quad 24$ Multiply 125368×4
501472
125368

K $\quad 24$
501472
2507360

501472
+2507360 Add the products.
$125386 \times 24=608832$

Multiplying Decimals by 10 Multiplication Strategies

Use place value to work out how to multiply by 10.

$$
6.74 \times 10=?
$$

If you multipy a number by 10 , the digits move one place value to the left.

Hundreds	Tens	Ones	Tenths	Hundredths
		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{4}$

Hundreds	Tens	Ones	Tenths	Hundredths
	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{4}$	

$6.74 \times 10=67.4$

Use place value to work out how to multiply by 100.

$$
6.74 \times 100=?
$$

Hundreds	Tens	Ones	Tenths	Hundredths
		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{4}$
Hundreds	Tens	Ones	Tenths	Hundredths
$\mathbf{6}$	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$

If you multiply a number by 100, the digits move two places to the teft.

$6.74 \times 100=674$

Partitioning
 Subtraction Strategies

Always start with the biggest number.

Partition the smaller number and take away the tens.
Take away the ones from this new number.

72
 $+$

 $=$ \square
 42 42 $+$ 9
 = 33

Counting Back Subtraction Strategies

33-16 =

73-16 =

Counting On
 Subtraction Strategies

Start at the lower number and count on the higher number. The number of steps you make to the higher number is the answer!

33-16 =

$73-56=$

$+10$
5051525354555657585960616263646566676869707172 73)7475

Column Method

Subtraction Strategies

Line up the tens and ones with the big number on top.

Subtract the ones.
If the bottom number in the ones column is bigger than the top, then adjust from the tens before you subtract.

Subtract the tens.

Difference and Take Away Subtraction Strategies

Subtraction means:

Language of Subtraction

 Subtraction StrategiesSubtract

Column Method

Subtraction Strategies

Line up the tens and ones with the big number on top.

Subtract the ones column.
Subtract the tens column.
Answer underneath.

Column Method

Subtraction Strategies

Line up the hundreds, tens and ones with the big number on top.

Subtract the ones in column.

Subtract the tens column.

Subtract the hundreds column.

Answer underneath.

